Japan-Asia CCUS Forum 2021

CO₂ Ship Transportation Current Status and Approach to Challenges

20th October 2021

Japan CCS Co., Ltd. Toshitsugu NOZAWA

Current Status of CO2 Transportation

(Slide 3-9)

Approach to Challenges

- Step toward Actual Utilization -

(Slide 10-17)

Current Status of CO2 Transportation

Demand and supply of liquified CO2 in Japan

Ex. Factories - 674,982 Tons (2020.4-2021.3)

Data Source : Japan Industrial and Medical Gases Association (JIMGA)

4

Japan:

- \cdot CO₂ for industrial use is transported in the form of liquid.
- -Tank trucks are mainly used (land / car ferry).
- No record / experience of transportation for CCUS.
- \Rightarrow Establishment of CO₂ transport will lead to development of CCS.

Overseas (as comparison) :

•5 dedicated CO₂ tankers are under operation in Europe.

Pipelines are used for CCS/EOR.

Fleet List of CO₂ tankers in the world

Vessel Name	FROYA	EMBLA	GERDA	HELLE (ex. CORAL CARBONIC)	IDUNA (ex. YARA GASⅢ)	AMAGI MARU (※)
Gross Tonnage	2,506 t	2,506 t	2,506 t	1,825 t	2,198 t	199 t
Cargo Tank Capacity	1,800m ³	1,800m ³	1,800m ³	1,250m ³	1,250m ³	365m ³
Cargo Temperature (lowest)	-30°C	-30°C	-30°C	-40°C	-30°C	-30°C
Maximum Pressure	19.0 bar (1.9 MPa)	19.0 bar (1.9 MPa)	19.0 bar (1.9 MPa)	18.0 bar (1.8 MPa)	20.0 bar (2.0 MPa)	25.0 bar (2.5 MPa)
						NO IMAGE

 (\circledast) It is recorded that only one CO₂ dedicated tanker was operated in Tokyo Bay in 1980's.

Mode	Phase	Distance	Quantity	Advantage
Tank truck	Liquid Temp:-20°C Press:2MPa	Short (<100km)	Small	Frequency
Pipeline	Dense	Short to Long	Large	Cost effective for plain
Ship/Vessel	Liquid Temp:unfixed Press:unfixed	Long (>200km)	Large	Flexibility and Cost effective for overseas

JCCS

Feasibility of CO₂ transportation in Japan

Conditions: 1 Million tons per year / over 200km

- Tank truck "disadvantageous"
 quantity not sufficient of units and drivers ⇒ costly
- Pipeline "disadvantageous"
 construction cost on hilly country like Japan
- Ship/Vessel "advantageous"
 the most suitable for large-scale and long-distance transportation as an energy efficient mode per ton-mile.

Locations of main emission sources and

potential storage sites in Japan

Edited by JCCS (FS by RITE 2005, 2007)

JUCS

Approach to Challenges

- Step toward Actual Utilization -

Preliminary Information

CO₂ Triple point (-56.6°C / 0.518MPa)

a. Why the current temperature & pressure are preferred?

Far from Triple Point, which means lower operation risks.

b. Suitable cargo conditions for larger on-shore storage tanks and tanks equipped on CO₂ tankers

To identify the optimal conditions of liquified CO_2 in terms of temperature and pressure in order to make tank capacity larger suitable for on-shore storage tanks and large liquified CO_2 tankers for long-haul. Under such conditions safety operation with minimized risk is adequately secured.

[Purpose of the Project]

For the purpose of the safe and efficient transportation of CO_2 emitted from factories and thermal power plants etc. for carbon recycle or CCS, NEDO and Contractors will develop the integrated transportation system (CO_2 liquefaction, ship transportation and tank storage) under optimal temperature and pressure conditions.

NEDO project for challenges (2)

JCCS

[Goal]

To complete the efficient preparations for the social implementation of CO_2 transportation for CCUS of approx. 1 Million tons per annum as of 2030

Research and development for the goal

- 1. Technology development for CO₂ liquefaction system
- 2. Technology development for liquefied CO₂ mass storage system
- 3. Conceptual / Basic design of large liquefied CO₂ carrier
- 4. Research and development on stability in CO_2 ship transport and specification examination of liquefied gas combined ship
- 5. Survey on trends in domestic CO_2 emission sources and domestic and overseas CO_2 transportation businesses
- 6. Examination of business model (domestic steel industry)

15

[Demonstration as technology development]

As the demonstration tests to verify the technology establishment, 10,000 tons of liquified CO_2 will be annually transported from a coal-fired power plant in Maizuru (Kyoto pref.) to a base in Tomakomai (Hokkaido). A 999GT sized CO_2 tanker will be used for this demonstration test.

[Schedule]

FY 2021 – 2026 (planned)

THEMES

- <u>Research and development</u> to establish liquefied CO₂ ship transport technology (FY2021-2026)
- Liquefied CO₂ ship transport <u>demonstration</u>
 Engineering, procurement and construction of land-based equipment (FY2021-2023)
 Marine Transport Demonstration Test (FY2023-2026)
- **3.** <u>Commercialization survey</u> of shipping for the purpose of CCUS (FY2021-2026)

JCCS